
Clustering pixel hits. An algorithm and some

software.

Gianluca Aglieri Rinella
University of Palermo and Doctoral Student at CERN (LHCb)

September 5, 2005

1 Pixel hits, adjacency and clusters

Two pixel hits hi, hj of a set are adjacent if they share a side. Optionally
two pixel hits sharing a vertex (corner) can also be defined adjacent.

Two pixel hits hi, hj of a set are connected if they are the same hit, if
they are adjacent or if a set of hits {hi, hl, hm, ..., hj} can be found such that
hi is adjacent to hl, hl to hm and so on to hj . A connected set is a set of
connected hits.

Given a set of hits, a pixel cluster is a subset of connected pixels such
that no other pixels of the set are connected to those in the cluster. The
clustering problem is the problem of determining the clusters in a given set
of hits.

The connection relation {(hi, hj)| hi is connected to hj} is an equivalence
relation on the set of hits, being trivially reflexive, symmetric and transitive.
The clusters of hits are the equivalence classes of the equivalence relation.
The determination of the clusters coincides with the determination of the
equivalence classes of the connection relation.

2 A clustering algorithm

An algorithm to extract the clusters from a set of pixel hits {h1, h2, ..., hN}
is described in the following. Refer to computer science literature for better
algorithms (Union-Find).

The algorithm is completed in two phases: the first phase build sets of
connected hits. The second phase merges the connected sets found in the
first phase if they contain couples of adjacent hits. At the end of the second
phase the list of clusters (equivalence classes) is obtained.

• First phase: given the N distinct hits {h1, h2, ..., hN} build sets of
connected hits:

1



1. Cycle over all hits hi i = 1...N

2. For each hi scan over the list of connected sets determined till
now. Check if hi is adjacent to any of the hits in the k -th con-
nected set; if true, add the hit to that set.

3. If the hit was not added to any of the connected sets found till
this point, then add a new connected set at the end of the list,
with the i -th hit as only hit.

At the end of the first phase a list of connected sets is determined.
They are not the clusters because there can be two different connected
sets containing connected hits, so being subsets of the same cluster.
There is the need to scan the list of connected sets found till this point
and merge those sets satisfying this condition into larger connected
sets.

• Second phase: Let Ck k = 1...M be the M connected sets determined
after first phase. Observe that some of them may be single hit sets.

1. Cycle over k backward from last to second: k = M...2

2. For each k, cycle over j forward from first to (k-1)-th: j = 1...(k−
1). If Ck and Cj have a couple of connected hits, then merge the
Ck with Cj , appending the hits of Ck to the latter; delete the kth
connected set Ck from the list. Else do nothing.

Notice that the order of the scanning is such that even if Ck was
merged with Cj , the updated Cj will be later compared with
connected sets with index smaller than j.

At the end of the second phase, all possible connected sets have been
merged and the list of connected sets is now the list of clusters.

3 Software

Software has been written to support the analysis of HPD data. Three C++
classes were defined and implemented:

1. My hit:

It is a class modeling a simple hit, i.e. wrapping the row and col co-
ordinates. It provides a set of boolean member functions to check if a
hit is adjacent to another. Example: first hit.IsAdiacentTo(second hit)
returns true if the adjacency condition is verified. Code is to be modi-
fied in this function if pixel hits sharing a vertex have to be considered
adjacent.

2



2. My whit:

It is a class inheriting from the previous (i.e. provides same data
members and interface) adding storage for a weight attributed to the
pixel hit. It is useful to store information on pixel hit more than once.
It can be used practically always, given the constructor attributes an
unitarian weight to the hit if not specified differently.

3. My cluster:

It is a class built around a simple data member, a vector of My whit
objects. It provides a member function to add hits to the cluster
that check for adjacency with at least one of the hits already in the
cluster. Forced insertion is also supported. Straightforward extraction
of statistics on a cluster (total weight, centre of mass, average row or
column coordinate, root mean square deviation) is also provided.

4. Other functions in auxiliary namespaces:

void My hit tools::Eliminate twins(vector<My hit > &hit list) elimi-
nates from the vector of hits redundant entries, i.e. hits with same
coordinates. This should be a pathologic condition.

void My whit tools::Eliminate twins(vector<My whit >&whit list) elim-
inates from the vector of weighted hits redundant entries, i.e. hits with
same coordinates. This should be a pathologic condition. The weights
of eventual multiple instances are added.

vector<My cluster > clustering tools::Clustering (vector<My whit >

hits list) gets in input a vector of weighted hits and realizes the clus-
tering with the algorithm previously described, returning the vector
of clusters.

vector<My cluster > clustering tools::Clustering (vector<My hit >

hits list) overloading the previous method to treat a vector of My hit.

To use all of the previous, it is enough to add the line #include “.//My cluster.C”
in the analysis program. There was not the time nor the need to provide
separation of headers from implementation; apologies.

3


